High-Fidelity Multi-Phase Radiation Module for Modern Coal Combustion Systems

Michael F. Modest

Shaffer and George Professor of Engineering University of California Merced Merced. CA 95343. USA

June 8, 2011 — Pittsburgh

Radiation Challenges in Multi-Phase Reacting Flows

- Radiative heat transfer in high temperature combustion systems
 - Thermal radiation becomes very important at elevated temperatures
 - Coal and hydrocarbon fuels $C_nH_m \to H_2O$, CO_2 , CO, NO_x , soot, char, ash
 - CO₂, H₂O, soot, char and ash strongly emit and absorb radiative energy (lower temperature levels)
 - Radiative effects are conveniently ignored or treated with very crude models
 - Neglecting radiation ⇒ temperature overpredicted by several hundred °C
 - optically-thin" or gray radiation ⇒ temperature underpredicted by up to 100°C
 - Neglecting turbulence—radiation interactions ⇒ temperature overpredicted by 100°C or more
 - In contrast: simple vs. full chemical kinetics ⇒ same overall heat release and similar temperature profiles

 Introduction
 Task Description
 Work To Date
 Future Work

 ●○○○
 ○○○○○○
 ○○
 ○

Radiation Challenges in Multi-Phase Reacting Flows

- Radiative heat transfer in high temperature combustion systems
 - Thermal radiation becomes very important at elevated temperatures
 - Coal and hydrocarbon fuels $C_nH_m \to H_2O$, CO_2 , CO, NO_x , soot, char, ash
 - CO₂, H₂O, soot, char and ash strongly emit and absorb radiative energy (lower temperature levels)
 - Radiative effects are conveniently ignored or treated with very crude models
 - Neglecting radiation ⇒ temperature overpredicted by several hundred °C
 - ullet "optically-thin" or gray radiation \Rightarrow temperature *underpredicted* by up to 100°C
 - Neglecting turbulence—radiation interactions ⇒ temperature overpredicted by 100°C or more
 - In contrast: simple vs. full chemical kinetics ⇒ same overall heat release and similar temperature profiles

Radiation Challenges in Turbulent Combustion

Computed temperature contours for Sandia Flame D scaled-up 4×

In presence of coal radiation expected to be stronger, but more gray; TRI unknown

State of the Art of Radiation Modeling

- Radiative Transfer Equation (RTE) Solvers
 - DOM/FVM included in CFD codes (ray effects, poor for optically thick media, high orders expensive)
 - SHM/P-N: P-1 in CFD codes (cheap and powerful; poor for optically thin media); higher orders (P-N) complex
 - Photon Monte Carlo (very powerful; expensive, statistical scatter); ideal for stochastic turbulence models
 - P-1 ideal solver for optically thicker pulverized coal/fluidized beds
- Spectral Models
 - Full-spectrum k-distributions (very efficient; cumbersome assembly, species overlap issues)
 - Line-by-line Monte Carlo module (outstanding accuracy at small additional cost)
- Turbulence—Radiation Interactions
 - Hybrid RANS-FV/transported PDF Monte Carlo
 - Emission TRI resolved with conventional RTE solver (OTFA)
 - Full TRI resolved with photon Monte Carlo for stochastic media

 Introduction
 Task Description
 Work To Date
 Future Work

 OOO●
 ○○○○○○
 ○○
 ○

- Spectral radiation properties of particle clouds
 - coal, ash, lime stone, etc..
 - varying size distributions and particle loading
 - classified, pre-evaluated and stored in appropriate databases
- Spectral radiation models for particle clouds
 - Adapt high-fidelity spectral radiation models for combustion gases
 - Extensions to large absorbing/emitting-scattering particles in fluidized bed and pulverized coal combustors
 - New gas—particle mixing models and consideration of scattering
- RTE solution module
 - P-1 (and perhaps a P-3) solver (for optically thick applications)
 - Photon Monte Carlo solver (for validation and for optically thinner applications)
- Validation of Radiation Models
 - Module connected to MFIX and OpenFOAM
 - Comparison with experimental data available in the literature
 - Simulations for fluidized beds and pulverized-coal flames

 Introduction
 Task Description
 Work To Date
 Future Work

 OOO●
 ○○○○○○
 ○○
 ○

- Spectral radiation properties of particle clouds
 - coal, ash, lime stone, etc.,
 - varying size distributions and particle loading
 - classified, pre-evaluated and stored in appropriate databases
- Spectral radiation models for particle clouds
 - Adapt high-fidelity spectral radiation models for combustion gases
 - Extensions to large absorbing/emitting-scattering particles in fluidized bed and pulverized coal combustors
 - New gas-particle mixing models and consideration of scattering
- RTE solution module
 - P-1 (and perhaps a P-3) solver (for optically thick applications)
 - Photon Monte Carlo solver (for validation and for optically thinner applications)
- Validation of Radiation Models
 - Module connected to MFIX and OpenFOAM
 - Comparison with experimental data available in the literature
 - Simulations for fluidized beds and pulverized-coal flames

- Spectral radiation properties of particle clouds
 - coal, ash, lime stone, etc.,
 - varying size distributions and particle loading
 - classified, pre-evaluated and stored in appropriate databases
- Spectral radiation models for particle clouds
 - Adapt high-fidelity spectral radiation models for combustion gases
 - Extensions to large absorbing/emitting-scattering particles in fluidized bed and pulverized coal combustors
 - New gas-particle mixing models and consideration of scattering
- RTE solution module
 - P-1 (and perhaps a P-3) solver (for optically thick applications)
 - Photon Monte Carlo solver (for validation and for optically thinner applications)
- Validation of Radiation Models
 - Module connected to MFIX and OpenFOAM
 - Comparison with experimental data available in the literature
 - Simulations for fluidized beds and pulverized-coal flames

 Introduction
 Task Description
 Work To Date
 Future Work

 ○○○●
 ○○○○○○
 ○○
 ○

- Spectral radiation properties of particle clouds
 - coal, ash, lime stone, etc.,
 - varying size distributions and particle loading
 - classified, pre-evaluated and stored in appropriate databases
- Spectral radiation models for particle clouds
 - Adapt high-fidelity spectral radiation models for combustion gases
 - Extensions to large absorbing/emitting-scattering particles in fluidized bed and pulverized coal combustors
 - New gas-particle mixing models and consideration of scattering
- RTE solution module
 - P-1 (and perhaps a P-3) solver (for optically thick applications)
 - Photon Monte Carlo solver (for validation and for optically thinner applications)
- Validation of Radiation Models
 - Module connected to MFIX and OpenFOAM
 - Comparison with experimental data available in the literature
 - Simulations for fluidized beds and pulverized-coal flames

Spectral Radiation Properties of Particle Clouds

Particle spectral properties governed by complex index of refraction (m = n - ik)

- Coal
 - Gray over short wavelengths (1 \sim 6 μ m), both n and k increase slightly for longer wavelengths (6 \sim 10 μ m)
 - Value varies with type
- Char
 - Both n and k increase weakly with wavelength
- Ash
 - Fairly constant refractive index (n)
 - Absorptive index(k) depends on mineral constituents
- Limestone
 - Has three absorption bands (Querry et al 1978)
- Soot
 - Polynomial expression (Chang and Charalampopoulos 1990)

Absorption/extinction coefficients normalized by Rayleigh limit

- independent of particle size distributions
- dependent on a mean particle diameter
- may be applied to all solid phases in MFIX

Absorption and scattering coefficient database

- absorption coefficient: stepwise gray for each of the 248 narrow bands for combustion gases
- scattering coefficient: gray scattering
- allowance for user-defined values

Spectral Models for Combustion Gases

Narrow Band k-Distributions

- RTE (without scattering): $\frac{dI_{\eta}}{ds} = \kappa_{\eta} \left(I_{b\eta} I_{\eta} \right)$
- Planck function much better behaved than absorption coefficient, \approx const over small part of spectrum $\Delta \eta$
- Can be reordered into a monotonically increasing function
- On right cumulative k-distribution of narrowband spectrum on left
- Requires "correlated" absorption coefficient

Spectral Models for Combustion Gases, cont'd

Full-Spectrum *k*-Distribution

- On right cumulative full-spectrum k-distribution of CO₂ absorption coefficient at 300 K, 1 bar on left
 - Very steep at k_{max}
 - Covers many orders of magnitude
 - Part of spectrum has "zero" κ_{η}
 - 6-10 RTE evaluations as opposed to >1,000,000 for LBL
 - Requires "correlated" absorption coefficient

Capabilities of MFIX and OpenFOAM

	MFIX	OpenFOAM
Gas-particle multiphase flow		
Dense	Full Support	None
Dispersed	Full Support	Lagrangian
Model Approach		
Continuum	Full Support	General
Discrete	DEM	Lagrangian Particle
Grid	Cartesian, Cylindrical	Unstructured
Physics		
Turbulence	$k-\epsilon$	Full Support
Radiation	T^4 law	Gray P-1

RTE Solution Module

P-1 Solver:

- Ideal RTE solver for expected large optical thicknesses
- Single-scale full-spectrum k-distribution, assembled from narrow-band data for particulates and gas k-distributions
- One RTE solution, but separate emission and absorption terms for individual phases

Photon Monte Carlo Solver

- Ported from our gas combustion work with LBL module
- Particulate emission and absorption added
- To ascertain accuracy of P−1/replace it whenever necessary

Validation of Radiation Module

- Standard validation against "exact" solutions for simple problems
- Comparison of MFIX vs. OpenFOAM for problems solvable by either (pulverized coal combustion)
- Comparison with experiment
 - added simulation tools to directly compute measured data
- Case studies

Work to Date

- MFIX installation
 - Installed on Cluster (64bit) and PC (32bit)
 - Set up test runs of fluidized bed and dilute gas-particle flows
 - Set up test runs of $k \epsilon$ turbulence model
- P−1 module
 - Rewrite discretization subroutines for PDE and boundary conditions
 - Gray participating media
 - Gray boundary conditions
 - Spatial varying absorption coefficients
- Radiative property database
 - Surveyed experimental measurements of radiative properties of particles in coal combustion
 - Compiled radiative properties of particles in coal combustion
 - Started to port gas property database to MFIX

Work to Date, cont'd

Test for P-1 module in a fluidized bed

- Black wall $T_w = 1000 \text{K}$
- Gray gas and particle $\beta_g = \kappa_g = 0.1 \text{m}^{-1}$, $\beta_s = \kappa_s = 20 \text{m}^{-1}$
- Single particle size $d_s = 0.4$ mm

Work to Date, cont'd

Test for P-1 module in a fluidized bed

- Black wall $T_w = 1000 \text{K}$
- Gray gas and particle $\beta_g = \kappa_g = 0.1 \text{m}^{-1}$, $\beta_s = \kappa_s = 20 \text{m}^{-1}$
- Single particle size $d_s = 0.4$ mm

Effort for Next Year

- Spectral Models for Solid Particles
 - k-distributions for particles
 - mixing models
- RTE Solvers for Solid Particle—Gas Mixtures
 - Completion of P-1 module
 - Implementation of PMC solver
 - spectral module for PMC solver
- Validation of Radiation Module
 - Literature survey of experimental data
 - Setup of simulations against experimental data
 - Parametric runs of relevant combustors

